

JWT Pentest Checklist v1.0 Created by: Chintan Gurjar

JWT Security Testing/Penetration Testing Checklist

No. Vulnerability/Test Description Testing Steps Expected Results Security Recommendations

1

Sensitive

Information

Disclosure in JWT

Claims

Sensitive data such as

passwords, keys, or internal IPs

are included in JWT payloads,

which can be decoded client-

side, leading to exposure of

sensitive information.

1. Obtain a JWT token from the

application.

2. Decode the JWT payload using

tools like jwt.io or any Base64

decoder.

3. Inspect the claims for sensitive

information like passwords, hashes, or

internal data.

No sensitive

information should be

present in the JWT

payload. Presence

indicates a

vulnerability.

- Do not include sensitive information in

JWT claims.

- Store sensitive data securely on the

server side.

- Include only necessary, non-sensitive

information in the JWT payload.

2
Signature Not

Verified

The server does not verify the

JWT signature, allowing attackers

to modify the token payload

without invalidating the token,

leading to unauthorized access.

1. Modify the JWT payload (e.g.,

change "admin": false to "admin":

true) without altering the signature.

2. Use the modified token to access

protected resources.

3. Observe if access is granted.

The server should

reject tokens with

invalid signatures.

Acceptance indicates

a vulnerability.

- Always verify JWT signatures on the

server side.

- Use trusted libraries that enforce

signature verification.

- Avoid disabling signature verification

options.

3
Algorithm None

Vulnerability

The JWT header alg is set to

"none", disabling signature

verification and allowing token

tampering.

1. Modify the JWT header to set "alg":

"none".

2. Remove the signature part of the

JWT.

3. Use the modified token to access

the application.

4. Observe if access is granted.

The server should

reject tokens with

"alg": "none".

Acceptance indicates

a vulnerability.

- Disallow the use of the "none"

algorithm.

- Explicitly specify and enforce

acceptable algorithms.

- Configure JWT libraries to reject tokens

with "alg": "none".

4

Weak HMAC Secret

(Brute-force

Attack)

Secret (Brute-force Attack) Weak

or commonly used secrets are

used with HMAC algorithms,

making them susceptible to

brute-force attacks to discover

the secret key.

1. Obtain a valid JWT token.

2. Use tools like Hashcat or John the

Ripper with a wordlist to brute-force

the HMAC secret.

3. If the secret is found, sign a new

token with modified claims.

The secret should be

strong and not

discoverable via

brute-force. Discovery

indicates a

vulnerability.

- Use strong, randomly generated

secrets with high entropy.

- Rotate secrets periodically.

- Avoid default or easily guessable

secrets.

JWT Pentest Checklist v1.0 Created by: Chintan Gurjar

5

Algorithm

Confusion Attack

(RS256 to HS256)

Changing the alg from RS256 to

HS256 causes the server to use

the public key as the HMAC

secret, allowing attackers to

forge tokens.

1. Change the JWT header "alg" from

"RS256" to "HS256".

2. Use the public key as the HMAC

secret to sign the token.

3. Use the modified token to access

the application.

4. Observe if access is granted.

The server should not

accept tokens with

altered algorithms.

Acceptance indicates

a vulnerability.

- Enforce strict algorithm validation.

- Do not mix symmetric and asymmetric

algorithms.

- Configure the server to accept only

expected algorithms.

6

Missing or Ignored

exp Claim (Token

Without Expiration)

Tokens lack an expiration (exp)

claim, or the server does not

enforce token expiration,

allowing indefinite token use.

1. Check if the token includes an exp

claim.

2. Modify or remove the exp claim.

3. Use the token to access resources.

4. Observe if access is granted without

expiration enforcement.

The server should

enforce token

expiration.

Acceptance of tokens

without exp indicates

a vulnerability.

- Include an exp (expiration) claim in

tokens.

- Set appropriate token lifetimes.

- Ensure the server validates the exp

claim.

- Implement token revocation

mechanisms if necessary.

7

Cross-Service

Audience Claim Not

Enforced

Tokens intended for one service

(aud claim) are accepted by

another, potentially leading to

unauthorized access across

services.

1. Obtain a token for Service A with

"aud": "ServiceA".

2. Use the token to access Service B.

3. Observe if access is granted without

proper audience matching.

The server should

reject tokens with

incorrect aud claims.

Acceptance indicates

a vulnerability.

- Enforce strict aud claim validation.

- Configure services to accept tokens

only for their intended audience.

- Use separate signing keys for different

services if possible.

8

Modifying Data

Without Modifying

Signature

Testing if the server verifies the

signature by altering the payload

without updating the signature.

1. Modify the JWT payload (e.g.,

change user roles) without changing

the signature.

2. Use the token to access resources.

3. Observe if access is granted.

The server should

reject tokens with

tampered payloads.

Acceptance indicates

a vulnerability.

- Ensure signature verification is

enforced.

- Reject tokens with invalid signatures.

- Use libraries that enforce signature

checks by default.

9

Token Origin

Exposure (Client-

Side Generation)

Tokens are generated on the

client side, exposing the secret

key or signing process to

attackers.

1. Analyze client-side code for token

generation logic.

2. Attempt to extract the secret key or

reverse-engineer the signing process.

3. Use the key to forge tokens.

Tokens should be

generated server-side

only. Client-side

generation indicates a

vulnerability.

- Generate tokens exclusively on the

server side.

- Do not expose secret keys or signing

logic to clients.

- Securely store secrets and limit access.

10
Excessive Token

Lifetime

Tokens have very long expiration

times, increasing the risk window

if compromised.

1. Check the exp claim for token

lifetime.

2. Assess if the duration is

appropriate.

Tokens should have

reasonable lifetimes.

Excessively long

- Set appropriate token lifetimes based

on risk assessments.

- Use short-lived tokens with refresh

tokens if necessary.

JWT Pentest Checklist v1.0 Created by: Chintan Gurjar

3. Attempt to use old tokens to access

resources.

lifetimes indicate a

vulnerability.

- Balance usability with security needs.

11

Embedding New

Public Key in

Header (CVE-2018-

0114)

Attackers include a new public

key in the JWT header, tricking

the server into using it for

signature verification.

1. Modify the JWT header to include a

new jwk with an attacker-controlled

public key.

2. Sign the token with the

corresponding private key.

3. Use the token to access the

application.

4. Observe if access is granted.

The server should not

accept untrusted

keys. Acceptance

indicates a

vulnerability.

- Do not trust keys supplied in tokens.

- Maintain a set of trusted keys on the

server.

- Validate tokens only against known

keys.

- Ignore unrecognized key parameters in

headers.

12
JWKS Spoofing via

jku Header

Manipulating the jku header to

point to attacker-controlled keys,

allowing token forgery.

1. Modify the jku header to point to

an attacker-controlled URL hosting

malicious keys.

2. Sign the token with the

corresponding private key.

3. Use the token to access the

application.

4. Observe if access is granted.

The server should not

fetch keys from

untrusted sources.

Acceptance indicates

a vulnerability.

- Restrict jku URLs to trusted endpoints.

- Use allowlists for JWKS URLs.

- Validate TLS certificates when fetching

JWKS.

- Avoid dynamic key retrieval based on

token headers.

13

kid Parameter

Injection and

Directory Traversal

Exploiting the kid (Key ID)

parameter to perform path

traversal, SQL injection, or

command injection.

1. Modify the kid value to include

path traversal sequences (e.g.,

"../../etc/passwd").

2. Inject SQL commands if kid is used

in database queries.

3. Inject OS commands if kid is used

in system calls.

4. Observe server responses for errors

or unauthorized access.

The server should

sanitize kid values.

Vulnerabilities

indicate improper

validation.

- Validate and sanitize kid inputs.

- Avoid using untrusted data in file paths

or commands.

- Use parameterized queries and input

validation.

14
SSRF via x5u and

jku Headers

Using x5u and jku headers to

perform Server-Side Request

Forgery attacks.

1. Modify x5u or jku headers to point

to internal or attacker-controlled

URLs.

2. Monitor if the server makes

requests to these URLs.

3. Use DNS logging to detect SSRF

attempts.

The server should not

make unauthorized

outbound requests.

SSRF indicates a

vulnerability.

- Validate and restrict x5u and jku URLs.

- Use allowlists for acceptable URLs.

- Implement network egress controls.

- Avoid fetching remote resources based

on untrusted token headers.

JWT Pentest Checklist v1.0 Created by: Chintan Gurjar

15
x5c Header

Certificate Injection

Including attacker-controlled

certificates in the x5c header to

bypass signature verification.

1. Create a self-signed certificate and

include it in the x5c header.

2. Sign the token with the

corresponding private key.

3. Use the token to access the

application.

4. Observe if access is granted.

The server should

validate certificates

against trusted CAs.

Acceptance indicates

a vulnerability.

- Enforce strict certificate validation.

- Accept certificates only from trusted

sources.

- Implement certificate pinning if

appropriate.

- Validate the certificate chain and

revocation status.

16

ES256 Nonce Reuse

Leading to Private

Key Compromise

Reusing the same nonce (k

value) in ECDSA signatures can

lead to private key disclosure.

1. Collect multiple JWTs signed with

ES256 using the same nonce.

2. Use cryptanalysis techniques to

derive the private key.

3. Sign new tokens with the private

key.

4. Use forged tokens to access the

application.

Nonce reuse should

not occur.

Vulnerability exists if

private key is

recoverable.

- Use secure cryptographic libraries.

- Ensure unique, random nonces for

each signature.

- Avoid manual implementation of

cryptographic algorithms.

17

Predictable or

Reused jti Claim

Leading to Replay

Attacks

The jti (JWT ID) claim is

predictable or reused, allowing

token replay or prediction.

1. Analyze jti values for patterns.

2. Attempt to reuse or predict jti

values.

3. Replay tokens to see if they are

accepted.

4. Observe if token reuse is possible.

Tokens should be

unique and non-

reusable.

Vulnerabilities

indicate improper

handling.

- Use secure, random jti values.

- Implement token replay protection on

the server.

- Maintain a store of used jti values to

detect duplicates.

18

Cross-Service Relay

Attack (Improper

Scope

Enforcement)

Tokens with broad scopes allow

access to unauthorized services

due to improper claim validation.

1. Use a token from one service to

access another service.

2. Observe if access is granted without

proper authorization.

3. Check if scope or role claims are

enforced.

The server should

enforce scope and

permissions.

Acceptance indicates

a vulnerability.

- Enforce strict scope and permission

checks.

- Validate claims like aud, scope, and

roles.

- Implement least privilege principles.

19

Failure to Enforce

Time-Based Claims

(exp, nbf, iat)

The server ignores time-based

claims, allowing tokens to be

used outside their valid time

window.

1. Modify exp, nbf, and iat claims to

invalid values.

2. Use the token to access resources.

3. Observe if access is granted despite

invalid claims.

The server should

validate time-based

claims. Acceptance

indicates a

vulnerability.

- Ensure the server checks all time-based

claims.

- Reject tokens with invalid or expired

claims.

- Synchronize server clocks.

JWT Pentest Checklist v1.0 Created by: Chintan Gurjar

20

Use of Insecure or

Deprecated

Algorithms

Using weak or deprecated

algorithms in the alg header

makes tokens vulnerable to

attacks.

1. Check the alg field for insecure

algorithms.

2. Attempt known attacks against

these algorithms.

3. Observe if tokens are accepted.

The server should

accept only strong

algorithms.

Acceptance of weak

algorithms indicates a

vulnerability.

- Use secure algorithms like RS256 or

ES256.

- Avoid deprecated algorithms.

- Keep cryptographic libraries updated.

- Enforce algorithm validation on the

server.

21

Missing or Invalid

iat (Issued At)

Claim

Tokens lack the iat claim or it is

set incorrectly, leading to

potential security issues.

1. Check for the presence and

correctness of the iat claim.

2. Modify iat to an invalid value.

3. Use the token to access resources.

4. Observe if access is granted.

The server should

validate the iat claim.

Acceptance indicates

a vulnerability.

- Include the iat claim in tokens.

- Validate the iat during verification.

- Reject tokens with invalid iat values.

- Ensure accurate server time

synchronization.

22
Insecure Client-Side

Storage of JWTs

JWTs are stored in localStorage

or sessionStorage, making them

accessible via JavaScript and

vulnerable to XSS attacks.

1. Review client-side code for token

storage locations.

2. Test for XSS vulnerabilities that

could expose tokens.

3. Attempt to read tokens via injected

scripts.

4. Observe if tokens can be exfiltrated.

Tokens should be

securely stored.

Exposure indicates a

vulnerability.

- Store JWTs in HTTP-only cookies.

- Implement Content Security Policy

(CSP).

- Prevent XSS vulnerabilities through

input validation and output encoding.

23

Lack of Token

Revocation

Mechanism

No method to revoke tokens, so

compromised tokens remain

valid until expiration.

1. Log out and attempt to use the old

token.

2. Observe if access is still granted.

3. Attempt to revoke a token and test

if it's invalidated.

The server should

invalidate revoked

tokens. Acceptance

indicates a

vulnerability.

- Implement token revocation strategies.

- Use short-lived tokens with refresh

tokens.

- Invalidate tokens upon logout or

critical events.

- Consider token blacklisting or

introspection.

24

JWT Used Without

Proper HTTPS

Protection

Tokens are transmitted over

unsecured channels (HTTP),

exposing them to interception.

1. Monitor network traffic to see if

tokens are sent over HTTP.

2. Attempt to intercept tokens using

tools like Wireshark.

3. Observe if the application allows

operation over HTTP.

Tokens should be

transmitted over

HTTPS only. HTTP

transmission indicates

a vulnerability.

- Enforce HTTPS for all communications.

- Implement HSTS headers.

- Do not allow fallback to HTTP.

- Validate SSL/TLS configurations.

25

Using JWTs for

Session

Management

JWTs are used as session tokens

without considering

1. Analyze how JWTs are used for

sessions.

Session management

should be secure and

robust. Vulnerabilities

- Align JWT usage with session

management best practices.

- Consider using opaque tokens.

JWT Pentest Checklist v1.0 Created by: Chintan Gurjar

Without Proper

Security

statelessness and security

implications.

2. Check for issues like lack of

invalidation or improper refresh

mechanisms.

3. Attempt session hijacking or replay

attacks.

4. Observe if sessions can be

compromised.

indicate improper

implementation.

- Protect tokens during storage and

transmission.

- Implement proper session invalidation

and renewal.

26

Cross-Site Request

Forgery (CSRF) in

JWT Authentication

JWTs stored in accessible

locations are susceptible to CSRF

attacks.

1. Craft a CSRF attack that triggers a

request including the JWT.

2. Observe if the server processes the

request.

3. Check for CSRF protections like

tokens or SameSite cookies.

The server should

prevent CSRF attacks.

Vulnerabilities

indicate lack of

protections.

- Use CSRF tokens or anti-CSRF

measures.

- Store JWTs in HTTP-only, SameSite

cookies.

- Avoid storing tokens in accessible

client-side storage.

- Implement server-side CSRF defenses.

27
Stored JWTs

Vulnerable to XSS

JWTs in client-side storage are

vulnerable to theft via XSS

attacks.

1. Identify XSS vulnerabilities in the

application.

2. Inject scripts to read and exfiltrate

JWTs.

3. Use stolen tokens to access the

application.

4. Observe if access is granted.

Tokens should be

protected from XSS.

Vulnerabilities

indicate improper

storage.

- Prevent XSS through input validation

and output encoding.

- Store tokens in HTTP-only cookies.

- Implement CSP to mitigate XSS risks.

